Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

4-(3,17-Dioxoandrost-4-en-16-ylidenemethyl)benzonitrile

G. Vasuki, ${ }^{\text {a }}$ V. Parthasarathi, ${ }^{\text {a* }}$ K. Ramamurthi, ${ }^{\text {a }}$ D. P. Jindal ${ }^{\text {b }}$ and S. Dubey ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, and ${ }^{\mathbf{b}}$ University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160 014, India
Correspondence e-mail: sarati@bdu.ernet.in

Received 29 October 2001
Accepted 2 January 2002
Online 20 February 2002
The title compound, $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{2}$, has the outer six-membered ring in a sofa conformation, while the central rings are in chair conformations. The five-membered ring adopts a slightly distorted $13 \beta, 14 \alpha$-half-chair conformation. The cyanobenzylidene moiety has an E configuration with respect to the carbonyl group at position 17.

Comment

The structure determination of the title compound, (I), was undertaken to investigate the conformation of the fused-ring system and the configuration of the 16-(4-cyanobenzylidene) functionality with respect to the carbonyl group at position 17. Compound (I), an androgen derivative, is a steroid with the normal $8 \beta, 9 \alpha, 10 \beta, 13 \beta, 14 \alpha$ configuration. The absolute configuration of (I) is based on the known configuration of the starting material, namely androstenedione (Busetta et al., 1972).

(I)

Ring A adopts a sofa conformation with C 1 in the α-position, as is evident from the deviation of C1 by -0.600 (5) \AA from the mean C2/C3/O30/C4/C5/C10 plane. The puckering amplitudes (Cremer \& Pople, 1975) are $Q=0.435$ (3) $\AA, \theta=$ $54.5(4)^{\circ}$ and $\varphi=11.2(6)^{\circ}$. The $\mathrm{C} 2-\mathrm{C} 3$ bond distance of 1.489 (5) \AA is comparable with the reported value of $1.492 \AA$ in a related structure (Cowe et al., 1982), in which ring A also has the 1α-sofa conformation.

Rings B and C adopt normal chair conformations. The $\mathrm{C} 4-$ C5 distance of 1.335 (4) \AA confirms the localization of a double bond at this position. In a few typical related steroid structures (Cowe et al., 1982; Bhadbhade \& Venkatesan, 1984; Galdecki et al., 1990), the C4-C5 bond distance is in the range 1.309 (8)-1.363 (3) \AA.

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.

The conformation of ring D can be expressed by two parameters, a pseudo-rotation angle, Δ, and a maximum torsion angle, φ_{m} (Altona et al., 1968). For a perfect envelope (C_{s} symmetry), Δ is 36°, whereas it is 0° for a half chair. In (I), ring D exhibits a slightly distorted $13 \beta, 14 \alpha$-half-chair conformation $\left(\Delta=11.4^{\circ}\right.$ and $\left.\varphi_{m}=38.1^{\circ}\right)$.

The $\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 20-\mathrm{C} 21$ torsion angle of $-177.5(3)^{\circ}$ indicates that the 4 -cyanobenzylidene ring has an E configuration with respect to the carbonyl group at position 17. Atom H 20 is Z with respect to this carbonyl group. The exocyclic $\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 20$ angle [132.5 (2) ${ }^{\circ}$] is found to be significantly greater than the normal value and this may be due to the steric repulsion between atoms $\mathrm{H} 15 B$ and H 22 $[\mathrm{H} \cdots \mathrm{H} 2.0531$ (2) Å].

The pseudo-torsion angle $\mathrm{C} 19-\mathrm{C} 10 \cdots \mathrm{C} 13-\mathrm{C} 18$ is observed to be $7.4(2)^{\circ}$. The $\mathrm{C} 27-\mathrm{N} 28$ bond length [1.134 (4) Å] and the C24-C27-N28 angle [177.1 (3) ${ }^{\circ}$] confirm the $\mathrm{C}-\mathrm{N}$ triple bond. Atoms O 29 and O 30 are both equatorially substituted, at C17 and C3, respectively. The dihedral angle between the cyanobenzylidene ring and the androstenedione moiety is $11.86(8)^{\circ}$. The geometry of the rings is trans at the B / C and C / D ring junctions. The molecules are found to pack in antiparallel arrangements.

Experimental

The title compound was prepared by dissolving 16-(4-cyanobenzyl-idene)-17-oxo-5-androsten- 3β-ol ($1 \mathrm{~g}, 2.49 \mathrm{mmol}$) in dry toluene

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 2$	$1.516(4)$	$\mathrm{C} 17-\mathrm{O} 29$	$1.212(3)$
$\mathrm{C} 3-\mathrm{O} 30$	$1.214(4)$		
			$122.2(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10$	$114.2(3)$	$\mathrm{O} 30-\mathrm{C} 3-\mathrm{C} 4$	
			$-4.3(5)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-54.1(4)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$-17.7(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$30.5(5)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 1$	$46.1(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-2.2(5)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 5$	

$(150 \mathrm{ml})$ by refluxing and then adding cyclohexanone $(10 \mathrm{ml})$. Traces of moisture were removed by azeotropic distillation. The distillation was continued at a slow rate during dropwise addition of a solution of aluminium isopropoxide (1 g) in dry toluene. The reaction mixture was refluxed for 4 h and left overnight. The next day, the solvent was removed by steam distillation. The solid thus obtained was filtered, dried and crystallized from methanol to afford crystals of (I) (yield $0.6 \mathrm{~g}, 60.3 \%$; m.p 528-531 K).

Crystal data
$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{2}$
$M_{r}=399.51$
Orthorhombic, $P 22_{1} 2_{1}$
$a=7.7638$ (10) \AA
$b=8.4584(10) \AA$
$c=33.220(5) \AA$
$V=2181.5(5) \AA^{3}$
$Z=4$
$D_{x}=1.216 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.842, T_{\text {max }}=0.943$
2365 measured reflections
2320 independent reflections (plus
43 Friedel-related reflections)
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=20-30^{\circ}$
$\mu=0.59 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.30 \times 0.25 \times 0.10 \mathrm{~mm}$

1957 reflections with $I>2 \mathrm{~s}(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=67.9^{\circ}$
$h=0 \rightarrow 9$
$k=-10 \rightarrow 5$
$l=0 \rightarrow 39$
2 standard reflections frequency: 120 min intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.105$
$S=1.11$
2363 reflections
272 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0491 P)^{2}\right. \\
& +0.2836 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.005 \\
& \Delta \rho_{\text {max }}=0.14 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.12 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0029 \text { (3) }
\end{aligned}
$$

All H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H and $1.2 U_{\text {eq }}(\mathrm{C})$ for all others.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: DIRDIF98 (Beurskens et al., 1998); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97.

DPJ thanks CSIR, India, for financial assistance and Cipla Ltd., Mumbai, for providing the steroid. GV thanks the UGC, India, for the award of an FIP fellowship (1999-2001).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1179). Services for accessing these data are described at the back of the journal.

References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Gould, R. O., Israel, R. \& Smits, J. M. M. (1998). The DIRDIF98 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bhadbhade, M. M. \& Venkatesan, K. (1984). Acta Cryst. C40, 1905-1908.
Busetta, B., Comberton, G., Courseille, C. \& Hospital, M. (1972). Cryst. Struct. Соттип. 1, 129-133.
Cowe, H. J. de L., Cox, P. J. \& Sim, G. A. (1982). Acta Cryst. B38, 662664.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Galdecki, Z., Grochulski, P. \& Wawrzak, Z. (1990). J. Crystallogr. Spectrosc. Res. 20, 425-428.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

